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1. INTRODUCTION'

This paper extends the two-attribute approximation theory for cardinal
utility functions in Fishburn [2] to three or more attributes. It is assumed
that u is a continuous real valued utility function on a closed and bounded
rectangular subset T of n-dimensional Euclidean space and that u is unique
up to positive affine transformations of the form uao where uab(x) = au(x) + b
with a > O. For expositional simplicity we shall let T = [0, 1]".

Each approximation [' for u on T that is discussed is a simple algebraic
combination of univariate functions and is of the form

k

v(x1 ,... , xn) = L j~lX1)/2JCX2) ... II/;(x,,),
j~1

(1\
\ 1.;

The distance between u and [' that we shall use is the uniform norm D(v, u) =

sup I vex) - u(x)[. Because of the added complexities of higher dimensions,
only simple approximations of form (1) will be examined. The next two
sections consider, respectively, the simple additive and multiplicative approxi­
mations. The final section then briefly looks at three other approximations.
All but the last approximation use n or more univariate conditional utility
functions. The last approximation is a multilinear interpolation form that
only requires estimation of II at the 2" vertices of T.

As in Fishburn [2] we shall say that v is affine preserving if and only if,
for all a > 0 and b, vab(x) = av(x) + b is equal to the right side of (1) for aU
x E T when every occurrence of II on the right side of (1) is replaced by
au + b. We shall let Vab(X) denote the right side of (1) when u therein is
replaced by au + b. Hence v is affine preserving when ['obeX) = vab(x) for all
a > 0, b and x E T.
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Approximation v is monotoniciiy preserving in Xi if and only if v is mono­
tonic increasing (decreasing) in Xi whenever u is monotonic increasing
(decreasing) in Xi' And v is monotonicity preserving if it is monotonicity
preserving in all n variables.

The utility function u will be said to be conservative if and only if it strictly
increases in all n variables and u(x) + u(y) > u(z) + u(w) whenever X, y, z,
WET and there are distinct i, j E {l,... , n} such that Xi = Zi > Yi = Wi ,

Yj = Zj > Xj = Wj , and X" = y" = Z" = w" for all k 1= {i, j}. This definition
corresponds to Richard's [4] conception of strict multivariate risk aversion.
Approximation v is conservatism preserving if and only if u is conservative
whenever u is conservative.

2. ADDITIVE ApPROXIMATIONS

The basic results for the simple additive approximation that uses one
conditional utility function for each attribute are given in our first theorem.
Refinements for the additive approximation are discussed later in the section.
Here and later we shall let UO(Xi) = u(xIO, ••• , xLI, Xi , X?+I ,... , x nO) when XO
is a fixed point in T. Although this notation is ambiguous in the sense that
uo(.5) does not tell which i is referred to, it is typographically simple and
should cause no confusion.

THEOREM 1. Given fixed XO= (xI O, ... , x nO) E T let

n

vex) = L UO(Xi) - (n - 1) u(XO)
i=I

for all x E T. (2)

Then vex) = u(x) wheneuer Xi = XiO for at least n - I of the i E {I,oo., n}, and
v is affine preserving and monotonicity preserving. In addition, let Al =
maxru(x), m = minru(x) and W = M - m. If XO is chosen so that u(XO) =
(M + m)/2 then, when n ~ 2,

(a) D(v, u) ~ Wen + 0/2 if u is not monotonic in more than n - 2
variables;

(b) D(v, u) ~ Wn/2 if u is monotonic in n - I variables;

(c) D(v, u) ~ Wen - 1)/2 ifu is monotonic in alln variables.

Remarks. This theorem subsumes Theorem I in [2] for n = 2. It is
clearly not very encouraging for the additive approximation for larger 11

since, for example, D(v, u) could well exceed W = max u(x) - min u(x) even
when u is monotonically increasing in every variable and XO is a point that
has the mid-value u(XO) = (M + m)/2, provided that 11 ~ 4. Note also that
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monotonicity does not affect the upper bound on DCr, u) unless it holds for
at least n - I variables.

Proof The first part of Theorem 1 is obvious from (2). The latter part,
with M, 111, Wand XO given, can be proved by worst-case arguments. By
change of variables if necessary, it will suffice to consider u monotonically
increasing in its first k variables for k E {O, n - 2, n - 1, n}. For k = 0,
a worst case is uo(x;) = M for all i and u(x) = 111, in which case D(i', 11) =
nM - (n - 1)(U + m)/2 - 111 = W(n + 1)/2. For k = 11 - 2 with XiD < 1
for each i ~ n - 2, we could have each uo(x;) very near to .M for all i with
u(x) near to m, so again D(v, u) ~ Wen + 1)/2. A worst case for k = n - 1
has Xi > x i

O for i = 1,... ,11 - 2 and X n- 1 < X~_l with uo(x;) Lear to ]v! for
all i ~ n - 2, 1l0(Xn - 1) slightly less than (M + m)/2 and uo(x n) - u(x) near
to iv! - m. (If we take Xi> XiOfor all i ~ n - 1, then uo(x.n) - u(x) must be
negative, but with Xi - Xio of different signs for different i ~ n - 1 the sign of
lIo(X,,) - u(x) is not determined.) So for k = 11 - 1 we get D(i', u) :::::;
(n - 2)M + (M + m)/2 - (n - 1)(M + m)/2 + (M - m) = Wnj2. FiEally.
for k = 11 a worst case is u(x) and all Ui(XiO) ne,tr to M, hence D(L', UI :::::;
nM - (n - 1)(m + M)!2 - M = Wen - 1)/2. Q.E.D.

If utilities are fully additive over the attributes then D(i', u) = 0 when (2) is
used. More generally, if the attributes can be grouped into subsets such that
utilities are additive among the subsets, then Theorem 1 can be used for ead:
subset with two or more attributes. Suppose for example that {Il ,... , IN} is
a partition of {I, ... , n} with I I j I = 11j > 1 for j = 1,... , N such that there is
a real valued function Uj on [0, ll"j for eachj with

rv
u(x) = I u;(x(Ij))

j=1

for aU x E T. (
C1\
~.}

where x(Ij) is the nrtuple of Xi for i E I j . Let M j == max u;(x(Ij)), mj =

min Uj(x(T}» and W j = M j - 111j for each j-so that 1v1 = L M j , m = L Inj

and W = L: W; in Theorem I-and let XO satisfy u;(x°(Ij)) = (M; + mj)/2
for eachj. Then, when V; is an additive approximation of Uj like (2), D(v;, Uj) =
o if nj = 1 and, for nj > 1, D(v j , uJ is bounded above by Wj(nj + 1);2,
Wjn;/2 or Wj(nj - 1)/2 according to whether Uj is monotonic in fewer than
11) - 1, exactly nj - 1, or nj variables. In addition, with v = VI + ... -+- L'N'

it follows that

N

D(v, u) :::::; L D(vj , uJ.
j~1

Hence if u is monotonic in all variables then D(v, u) :::::; Lj Wj(nj - 1)/2 ~
(max Wj)(n - N)/2.
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The preceding paragraph shows that more information about u than is
presumed in Theorem 1 allows tighter bounds on D(v, u). A similar procedure
allows the following refinement without assuming partial additivity as in (3).
This refinement can of course be used in connection with (3) when (3) holds.

THEOREM 2. Suppose (2) holds with M, m, Wand XO as given in Theorem 1
and suppose fur/her that M i = max uo(x;), m; = min uo(x;)for i = 1'00" nand
that u is monotonically increasing in its first k variables. Then, when uo(x;O) =
u(XO) = (M + m)/2for all i, and n :); 2:

(a) D(v, u) <; max l;~ (Mi - M i~~), ;t (M ~ ~ - 111;)! + W/2

if k:S;; n - 2;

\"-1 M+m
(b) D(v, u) :s;; max Itl (M; - 2 ) + kIn

. on-I (M +111) !- .mm AI;, L 2 - 111; - Tn" + plax 111;
l~n-l .i=! l~n-l

+ W/2 if k=n-1;

(c) D(v, u) ::s;; max li~ (M; - M ~ 111) + M + 111

- min{M; + M j : 1 :s;; i <j:S;; n},

~ (M + 111 );~ 2' - m; - AI - 111

+ max{111i + m): 1 :s;; i < j ::s;; n}l + W/2 if k = n.

Proof In each of (a), (b), and (c) the 1I1i part comes from a worst-case
maximization of vex) - u(x), and the 111; part comes from a worst-case
maximization of u(x) - vex). I shall prove only the M; parts of (b) and (c)
since their m; proofs are symmetric and since (a) is obvious. For k = n - 1
in (b), vex) - u(x) = L;':11 [UO(Xi) - (M + 111)/2] + [uo(x,,) - u(x)]. If we
allow one Xi < x;o for i < n then uo(xn) - u(x) can be made near to M n - Tn

and the uo(Xj) for j =1= i and j :s;; 11 - 1 can be taken near to their M j . We
also choose the i for X; < xl as the i with the smallest M; and make UO(Xi)
slightly less than u(xO). It is easily checked that this "tends" to maximize
vex) - u(x) and it implies that vex) - u(x) :s;; M n - 111 + Li<n-l(M; ­
(M + m)/2) - min{M;: i ::s;; 11 - I} + (M + m)/2 = Li<,,-I(Mi - (M + m)/
2) + M n - min{M;: i ~ 11 - I} + W/2. Finally, for k = n in (c), the max of
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t1(X) - u(x) will occur with all uo(x,) = M i except for 0, t or 2 i for which
we take uo(x;) slightly less than u(.xO). The worst case here arises if we choose
two i for uo(x;) < u(XO), in which case u(x) can be as small as m. When the
two i are chosen so that their M i are as small as possible, the result is
vex) - u(x) ~ L;~l(M.i - (M + m)/2) + (M + m)/2 - min{M; -+- M,;: 1 <
i < j < n} + 2[(M + m)/2] - m = L;~l(M; -- (M + m)/2) + iII --'- m ­

min{M; + M;} + W/2. Q.E.D.

Fishburn [2J shows that if (2) is used when u is conservative and n = 2,
and if Ll = u(l, 0) + u(O, 1) - u(O, 0) - u(l, 1), then D(v, u) cannot be less
than .1/4 but XO can be chosen for (2) to ensure that D(v, u) < .1/3. Because
L1 ~ W, the .1/3 bound is less than the upper bound in Theorem 2(c), which
is never less than W/2. Although the conservatism picture is less clear when
n ? 3, several results can be established for this case. We begin with two
lemmas.

LEMMA L Suppose u is conservative, Xi ~ y; for i = Loo., n, and I and J
are nonempty disjoint subsets of {I,... , n} with lu J = {I,.... n}. Then

u(xJor i E I, yJor j E J) + u( yJor i E E, xJor j E J) ? u(x) + li( y), (4)

n

I U(X; , yJor all j oF i) ? u(x) + (/1 - 1) u( y), (5)
i=l

":z:: u(y; , xJor all j oF i) ? u(y) + (11 - 1) u(x),
'i~1

and> holds for each of(4), (5) and (6) if X; < Yi for some i.

LEMMA 2. Suppose u is conservative, v is given by (2), a!!djE~1, ... ,n1.
If Xi ~ XiO for all i oF j, then vex) - u(x) stricti)' decreases ill Xj when the
xJor i =F j are fixed; ifXi ? xl for all i =!= .I, then vex) - u(x) strictiy increases
il1 x j 'when the Xi for i =!= j are fixed.

Proof of Lemma 1. Let u be conservative with Xi 0;; .Vi for i = i, ... , n. ff
f c= {I} then conservatism implies

U(X1 , y~ ,... , Y,;, Xj+1 , ... , x,,) + U(Y1 ,... , )';-1, X j , ... , X,,)

~ U(J'1 , ... , yj, Xj+! , ... , x,,) + U(X1 ,Y2 ,... , Yi-1' Xj , .... X,,)

for} = 2'00" n. Addition of these inequalities over} from 2 to 11, plus cancella­
tion of identical terms, yields (4) for I = {I}. Since the same procedure holds
for any I = {i}, (4) holds when I I I = 1. Proceeding by induction, suppose (4)
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holds for I I I = k - 1 ? 1. This hypothesis and the result just proved for
I I I =1 respectively imply u(xl ,... ,X" , J'HI '00" Yn) + i/(Xl ,. Y2 '00" YTc,
Xk+1 '00', x n ) ? u(x) + u(xl , Y2 ,... , Jl.n) and U(Xl' Y2 '00" Yn) + U(YI ,... , Yk,
Xk+1 ,... , x n) ? u(xl , Yz ,... , Yk , XHI , ... , x n) + u(y), the sum of which yields
(4) for 1= {l,oo., k}. It foIlO\¥s that (4) holds in general. Using (4) we then
have

U(Xl , Y2 ,... , Yn) + u(y! , X2, Y3 '00" Yn) ? u(x! , X2, Y3 ,00" Yn) + u(y),

u(xl '00" X" , Y"+l '00" Yn) + (Yl '00" Yk , X"+l , Y"+2 '00" Yn)

? lI(xl ,"', Xk+1' YH2 '00" Yn) + u(y) for k = 2,.." n - 1,

and the addition of these n - I inequalities implies (5). Inequality (6) is
proved in a similar way. If Xi < Yi for some i then it follows from the proce­
dures used to establish (4), (5) and (6) that they will hold with? replaced by
>. Q.E.D.

Proofof Lemma 2. Given the hypotheses of the lemma suppose for
definiteness thatj = 1. Then vex) - u(x) = 2:i>l[UO(Xi) - u(XO)] + [UO(xl) ­
u(x)]. If the Xi for i > I are fixed at values Xi ~ Xio, and if Xi < Yl' then (4)
with 1= {l} implies that UO(xl) - u(xl , X2,... , x n) > uoc.Jll) - u(y!> X2,00., x n).
Therefore vex) - u(x) decreases as Xl increases with the Xi ~ xl fixed for
i > 1. The proof of the final part of Lemma 2 is similar. Q.E.D.

Using Lemmas 1 and 2, we now consider what happens to vex) - u(x) and
u(x) - vex) when n ? 3, U is conservative, and v is given by (2) with u(XO) =
(M + m)/2. Suppose first that the maximum of u(x) - vex) occurs at X for
which Xi < XiO for i E I and Xi ? XiO for i E J. If XO is in the interior of T then
Lemma 2 implies that neither I nor J is empty, and if XO is not in the interior
then the definition of I and J can be modified if necessary (~ for I, > for J)
to ensure that neither I nor J is empty. Then, by (5) and (6) respectively,

I UO(Xi) ? U(Xi on I, XiO on J) + (I I I - 1) lI(XO),
I

I UO(Xi) ? U(XiO on I, Xi on J) + (I J I - 1) u(XO),
J

so that L UO(Xi) ~ U(Xi on I, XiO on J) + U(XiO on I, Xi on J) + (n - 2)u(xO).
It then follows from (2) that .

U(X) - vex) ~ u(x) + u(XO) - U(Xi on I, Xio on J) - U(XiO on I, Xi on J) ~ W/2.

Therefore, when U is conservative and u(XO) = (M + m)/2, u(x) - vex)
cannot exceed W(2.
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Consider next the maximization of vex) - u(x) when u is conservative, and
let M; = max UO(Xi) and lni = min UO(Xi)' For convenience we examine
vex) - u(.\:) when Xi ~ Xiofor i = 1,... , k and Xi ? XiO for i > k. When k = 0,
Lemma 2 implies that vex) - u(x) is maximized at x = (1, ... , 1), where

'(1 1) - (1 1) - ~ ('1. _ M + iii') _ Hi l?
L "'0' U "0" - i~ .H: l 2 / rr / .... ,

assuming that u(XO) = (M + m)/2. Similarly, when k = n, Lemma 2 implies
that vex) - u(x) is maximized at x = (0, ... , 0), where

n (M + m \v(O, ... ,O) - u(O, ... , 0) = WI2 - I ? - nli •
i~l - J

Inequalities (6) and (5) imply respectively that v(1, ... , 1) - u(1, ... , 1) ? 0
and v(O, ... , 0) - u(O, ... , 0) ? 0. Since Lemma 2 implies that vex) - u(x)
cannot exceed v(I, ... , 1) - u(I,..., 1) when k = 1 and that it cannot exceed
v(O, ... , 0) - u(O, ... , 0) when k = n - 1, it remains only to examine k E' {2,... ,
n - 2} when n ? 4. In the latter case a worst-case argument shows that

on ( M + 111) .vex) - u(x) ~ I M i - .., + W12,
i=k+l ~

and the worst of these worst cases occurs when k = 2. Since it is easily
seen that the upper bound in the preceding expression with k = 2 exceeds
both v(I, ... , 1) - u(l, ... , 1) and v(O, ... , 0) - u(O, , 0), and since the two i for
which Xi ~ XiO could be any two of the iE'{I, , n}, we have established the
fact that vex) - u(x) is bounded by L~=l(Mi - (M + m)/2) + M + m ­
min{Mi + M j : 1 ~ i <j ~ n} + W/2.

The following theorem summarizes the foregoing conclusions.

THEOREM 3. Suppose n ? 3, U is conservative and v is given by (2) with
u(XO) = (M + m)/2, M = max· u(x), m = min u(x), W = M - 111, and
M i = max UO(Xi)' In; = min uo(xi)for i = 1,.... , n. Then max(u(x) - v(x)] ~
W12, and

11 = 3 =? max [vex) - u(x)]
T

= II f (' 'f. - M + 111) -max L.... 11', 2
i=l

" 3 ·jt,;f + Tn )i
W12, Wj2 - L ( .., - l1?i >,

i=1 \ ~ I)

n ? 4 =? max [vex) - u(x)]
T

;, ( M + 111)
~? Mi - 2 + M+ 111

,=1

- min{Mi + l'vIj : 1 ~ i <j ~ n} + W/2.
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Although the bound on VeX) - u(x) for n ~ 4 may be no better than the
bound on D(v, u) in Theorem 2(c), other choices ofu(xO) under conservatism
,may give better general bounds. For example, if u is conservative and if
XO = (1, ... , 1), then Lemma 2 shows that D(v, u) = v(O, ... , 0) - u(O, ... , 0) =
u(O, I, ... , I) + ... + u(l, ... , I, 0) - (n - l)u(1, ... , 1) - u(O, ... , 0), which is
strictly positive by (5) but can never exceed W.

3. MULTIPLICATIVE ApPROXIMATIONS

The basic multiplicative approximation for u with fixed point XO and
uo = u(XO) ¥= °is

n

vex) = Il UO(Xi)/U~-l
i=l

for all x EO T. (7)

(8)

This is exact when Xi = XiO for at least n - I of the i E {I,... , n}, it is monoto­
nicity preserving if u has constant sign, and it is not generally affine preserving.
When auo + b ¥= 0, the affine transformation uab = au + b on the right
side of (7) gives vab(x) = IT (auO(xi) + b)/(auo+ b)n-1 with Vab(X) = vab(x) =

av(x) + b if at least n - 1 of the i have Xi = xl. When the Vab are normalized
'by the transformations Wab(X) = (vab(x) - b)/a, we get

W (x) = IT (auO(xi) + b) - b(auo + b}n-l
ab' a(auo + b)n-1

the family {Wab: a > 0, auo + b ¥= O} is the set of basic multiplicative
approximations for u with fixed point xO. The different functions in this
family correspond to different choices of origin and scale unit for u.

Because a family {Wab} of multiplicative approximations corresponds to
each fixed point xO, multiplicative approximations are more flexible than
additive approximations. An example of this flexibility is shown by the fact
that any additive approximation can be approximated to any desired accuracy
by a multiplicative approximation. This is shown by the next theorem. On
the other hand, a multiplicative approximation cannot generally be approxi­
mated to any desired accuracy by an additive approximation, as can be seen
by supposing that u(x) = X 1X 2 on [0, 1]2 for n = 2. Then D(v, u) = °when
v is given by (7) with XO = (1, 1); but, when v is given by (2), D(v, u) is
minimized at XO = (1/2, 1/2), where its value is 1/4.

THEOREM 4. Suppose XO is the fixed point for (2) and (7), u(XO) =f= 0,
b ¥= 0, and v is given by (2). Then for every 8 > °there is an a > °for which
D(Wab' v) < 8.
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Proof The b" terms in the numerator of (8) cancel and we are left with
ab"-1v(x) plus terms in a2 through an. When the leading a in the denominator
of (8) cancels into the numerator we are left with

bn - 1v(x) + terms in a through a"-1

1\' (x) - --~~--,-----,,.,---=--=---
. ab - (auo + b)"-1 ,

where vex) is given by (2). With a > °and smail, and b c;;2 0, it foHows that
Wab(X) -+ vex) as a -+ 0, and the convergence of Wab to v is easily seen to be
uniform. Q.E.D.

The next theorem, which corresponds to Theorem 5 in [2], shows how
much v might differ from u when v is given by (7). The theorem considers all
cases in which max u(x) - min u(x) = 1 with min u(x) ~ -1/2. A scale
transformation that maps u into au, a > 0, will map D(r, u) into aD(v, u).

THEOREM 5. Suppose n ~ 3 and v is given by (7) with min u = r, max 11 =
r + 1 and Uo = u(Xo) # 0. Jf -1/2 :s;; I' < °then it is always possible to have
D(v, u) :s;; 1 by choosing Uo = I' -+- 1. Jf I' ~ 0 then:

(a) If 11 is monotonic in no more than 11 - 2 variables, it is always
possible to have D(L', u) :s;; [(I' + 1)n+l - r l1 +1]([(r + 1)" -+- r n ] by choosing
U~-1 = [(r + 1)" + r n]/(2r + 1);

(b) If u is monotonic in n - 1 variables, it is always possible to have
D(v, u) :s;; [(I' + 1)" - r"]/[(r + 1)"-1 + r"-l] by choosing U~-2 = [(r + 1)"-1 ~
r"-11/(2r + 1);

(c) If u is monotonic in all variables and n = 3, it is always possible to
have D(v, u) :s;; (2r 2 + 3r + 1)/(2r2 + 2r + 1) by choosing uo2 = 1'2 + r +- If2;

(d) Jf u is monotonic in all variables and n ~ 4, then D(v, u) :s;;
[uo2(r + 1)"-2 - r n]/[uo2(r + 1)n-3 + r"-l] when Uo is the positive real root of

(9)

and there is no other value of Uo that can guarantee a smaller upper bound on
D(v, u).

Remarks. The bounds on D(v, u) given prior to part (d) are also the best
possible without assuming more about u. Monotonicity has no effect on the
upper bound when the origin is interior to u(T), but is important when
min u(x) ~ O. In each of (a) through (d), D(v, u) :s;; 1 when r = 0; as r -+ 00

the bounds on D(v, u) in (a) through (d) respectively approach (n + 1)f2,
nf2, (n - 1)/2 and (n - 1)/2, which are the same as the respective bounds in
Theorem 1 when W = 1. Hence for larger n the upper bounds on D(v, u)
with r = °in the multiplicative approximation are considerably better than



188 PETER C. FISHBURN

the general bounds for the additive approximation. As will be shown in the
following proof, there is an important difference between the 11 = 3 and
n ;?: 4 cases when r ;?: 0 and u is monotonic in all variables. It may also be
noted that when r = 0 in part (c), any U0

2 E [1/2, I] will give D(l', u) ~ 1.
Hence in all cases we can guarantee that v is monotonicity preserving and
that D(v, u) ~ 1 by taking r = 0 and uo = 1.

Proof Throughout this proof E is an abbreviation for I vex) - u(X) I =
In UO(Xi)/U~-1 - u(x)! and u is assumed to increase in Xi if it is monotonic in
Xi' (If u decreases in Xi' a change of variable from Xi to 1 - Xi gives the
same conclusions.)

Given the hypotheses of Theorem 5, assume throughout this paragraph
that -1/2 ~ r < O. Suppose first that uo > O. With no monotonicity,
max E ~ max{(r + l)n/u~-1 - r, (r + 1) - r(r + l)n-l/u~-I}. The latter
max is minimized at Uo = r + 1, where max E ~ 1. Even if u is monotonic in
every variable, by taking Xi < XiOfor one i it is still possible to have a worst­
case value of u(x) - vex) near to (r + 1) - r(r + l)n-l/u~-\ which is
minimized at Uo = r + 1 with value 1. Suppose next that Uo < O. If 11 is odd
then U~-l > 0 and we cannot improve on the Uo > 0 result since r + 1 ;?: [ r [.
If 11 is even then E could be as large as (r + 1) - (r + l)n/u;-\ which is as
great as 1 when r ~ Uo < O. Hence, when r < 0, we cannot improve on
max E ~ 1 at Uo = r + 1.

We assume henceforth in this proof that r ;?: O. If u is monotonic in no
more than 11 - 2 variables, worst-case considerations give max E ~

max{(r + l)n/u~-1 - r, (r + 1) - rn/u~-I}. The latter max is minimized
when its terms are equal, i.e. when U~-1 = [(r + 1)n + rn]/(2r + 1). This
value of Uo is in [r, r + 1], and it implies that max E ~ [(r + l)n+l ­
rn+1]/[(r + l)n + rn].

Suppose next that u is monotonic in its first 11 - 1 variables. The worst-case
values of vex) - u(x) will arise either with all Xi ;?: xl for i = I, ... , 11 - 1
or with Xi ;?: Xio for i ~ 11 - 2 and Xn- l < X~_I' and hence max[v(x) ­
u(x)] ~ max';(r + l)n/u~-1 - (r + 1), (r + 1)n-l/u~'-2 - r}. The worst-case
value of u(x) - vex) is obtained either with Xi ~ XiOfor i = 1,... ,11 - 1 or
with Xi ~ Xio for i ~ 11 - 2 and Xn- 1 > X~_I' and therefore max[u(x) ­
vex)] ~ maxi(r + 1) - (r + 1) rn-l/u~-\ (r + 1) - r"-I/u~-2}. Since the
second term in the latter max is never less than the first term,

max E ~ max{(r + l)"/u~-1 - r - 1,

The first two terms on the right side of this inequality decrease in Uo and the
third term increases in Uo' The second and third terms are equal when
U~-2 = [(r + 1)"-1 + r"-I]/(2r + 1) with value [(r + 1)" - r"]/[(r + 1)n-l +
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1'''-1], which is the minimum of the right side if this value is as great as the
first term's value at the indicated Uo . Thus to complete the proof of part (b)
of the theorem we need to show that

'" r"-l + (r +- 1)"-1 ]<"'-1)/<"-2) ~ (I" +- l)n - r"
(r+l)"/l 21'+1 -r-I~(1"+1)n-1+-rn

After some algebraic manipulation, this inequality can be written as

(2r +- 1)[(21' +- l)(r +- 1)n)n-2 ~ [(r +- 1)"-1 + r"-1)[2(r +- 1)" +- 1'''-1]''-2,

This is true since (2r +- 1)"-l(r +- 1)"<"-2) ~ 2"-2(1' + 1)","-2)[(1' +- 1)"-1 +­
/""'-1), or (2r +- 1)"-1 ~ 2n- 2(r +- 1)"-1 +- r"-l], as the reader can readily
show.

Finally, suppose that u is monotonic in all 11 variables. For worst cases we
consider Xi:;?: xl for n, n - 1 or n - 2 variables for v - U, and Xi ~ Xi

Q

for 11, n - 1, or 11 - 2 variables for u - D. In the v - u case, the worst
n - 1 case is dominated by the worst n case; for U - D, the worst 11 case is
dominated by the worst n - 1 case, as is easily proved. This leaves us with

max E ~ max{(r +- It/U~-l - r - 1, (r +- l)n-2/u~-3 - r,

When n = 3, the second and fourth terms on the right side equal 1, and the
first and third equal (2r 2 +- 3r +- 1)/(2r2 +- 2r +- 1) when U0

2 = r2 +- r +- 1(2.
This verifies part (c) of the theorem. Part (d) is clearly true when I" = 0,

Assume henceforth that n :;?: 4, r > 0 and u is monotonic in all variables.
It is easily seen that the right side of the preceding max E inequality is mini­
mized when one of its first terms equals one of its last two terms. We shaH
prove that the minimum occurs when the second and third terms are equal,
i.e. when (I" + 1)"-2Iu~-3 - r = (I' +- 1) - (r +- 1) r"-l/u~-l. The applicable
value of Uo that satisfies this equation and the corresponding bound of
D(L', u) are given in part (d) of the theorem. To complete the proof we need
to show that, when Uo is the positive root of (9), the first and fourth terms on
the right of the preceding max E inequality cannot be greater than the second
or third term. Because the first two terms decrease in Uo and the last two
increase in Lto , it will suffice to show that the value of lie at which the first
and third terms are equal is less than Uogiven by(9), and that the value of Uo at
which the second and fourth are equal is greater than u{) by (9).

Consider the fourth term, i.e. I' +- 1 - 1'''-2/U~-3. This equals the second
term iff U;-3 = (r + 1)n-2 +- r"-2](2r +- 1). At this value of Uo the third
term exceeds the fourth term iff U0

2 > r(r +- 1), or, after substitution and
simplification, iff [(I' +- 1)<"-1)/2 - 1'("-1)/2][(1' + 1Y,,-31/2 - r(n-3l/2J > 0,
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which is obviously true. Since the third term exceeds the fourth when the
second and fourth are equal, and since the second decreases in Uo while the
third and fourth increase in Uo , the value of Uo at which the second and third
are equal must be less than the value of Uo at which the second and fourth
are equal.

We now examine the first term, i.e. (r + 1)n/ll;-1 - (r + 1). This equals
the third term iff U~-1 = [(r + 1)n-l + rn-1]/2. At this value of llo the second
term exceeds the first term iff (r + l)n-2/u~-3 - r > (r + l)n/u~-1 - (r + 1)
which, after substitution and algebraic manipulation, occurs iff

,,-3 [(r + 1)n-l (2r + 1) - rn- 1]n-l
2 > (r + 1)<n 1)(" 2) [(r + 1)n 1 + rn-I]2

The right hand side of this inequality equals 1 at r = 0 and approaches 2n - 3

as r --+ 00. (The latter value is most easily shown by expanding numerator
and denominator in powers of r. The numerator equals 2n - I r 2,,-2 plus terms in
smaller powers of r, and the denominator equals 4r 2n- 2plus terms in smaller
powers of r.) Moreover, it can also be shown that the derivative of the right
side with respect to r is positive. Since my proofof this is long but algebraically
straightforward, I shall not present it here. It then follows that the preceding
inequality is true for all r ;;:, O. Hence the second term exceeds the first term
when the first and third are equal. The monotonicity aspects of the terms then
allow us to conclude that the Uo value at which the first and third terms are
equal is less than the Uo value at which the second and third terms are equal.

Q.E.D.

Equation (3) of the preceding section expresses a case in which the attri­
butes can be grouped into subsets such that utilities are additive among
the subsets. Given (3), one could approximate each llj in (3) by a simple
multiplicative rather than additive approximation. For example, if (3) holds
and II and the Uj are scaled so that min u(x) = min ll;(x(Ij» = 0, max u(x) =

u(XO) = 1 and max u;(x(Ij» = u;(xO(Ij» = M j with L M j = 1, and if Uj is
approximated by

v;(x(IJ) = TI U;(Xi' Xko for k EO Ij\{i})/M;i-t,
iEl j

then Theorem 5 above plus Theorem 5 in [2] give D(v, ll) :s;; Lj D(vi , u;) :s;;
L (Mi : 17j > I}.

Instead of additivity over subsets, it might be true (Fishburn and Keeney,
[3]) that U is multiplicative over subsets. A basic multiplicative form for the
partition {II"'" IN} of{I,... , n} with I Ij I = 17j and fixed point XO with u(XO) = 0
is

N

Ku(x) + 1 = TI [Kuj(x(Ij » + 1]
j~1

for all x EO T,
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where K ~ 0 and uix(Ij)) = u(x; on I j , x;o on {l, ... , n}\!j). The positive
affine transformation Ku(x) + 1 for K > 0 or -Ku(x) - 1 for K < 0 puts
this into the form

for all x E T, (10)

where l/o E {-I, I}. If I1j = 1 with I j = {k} then ulx(Ij)) = UO(xk ). If 11j ~ 2
then u j in (10) could be approximated by either an additive or multiplicative
form over the i E I j • If (10) holds with Uo EO {-I, I}, and Vj approximates Uj

with vex) = TI v;(x(Ij))!u~-\ then

which can be used as a basis for further analysis.
As in Theorem 2 for the additive approximation, refinements can be made

in the approach ofTheorem 5 when the range of uo(x;) is taken into considera­
tion. To illustrate, suppose that II is scaled so that M = max u(x) and In =
min u(x) ~ 0, and let m;(xO) = min llo(X;) and M;(xO) = max uo(.,<;). Then,
when u is not monotonic in more than 11 - 2 variables, a worst-case
analysis says that

and similar though more complex expressions apply to the other monotonicity
cases. As in the proof ofTheorem 5, an effort could be made to choose XO to
balance or equalize the terms on the right sides of these expressions. However,
unlike when (2) is used, we know that the relative accuracy of v under (7), i.e.
D(v, u)![M - m], depends on the choice of M and m as well as on the choice
of xO. Hence, when (7) is used, it is essential to consider the effects of scaling
in addition to the choice of xO.

4. OTHER SIMPLE ApPROXIMATIONS

The approximations in the two preceding sections are based on one condi­
tional utility function for each variable. In this section we shall briefly
examine three other approximations among the vast number that could be
considered. The first of these is based on two fixed points in T and uses two
conditional utility functions for each variable. The second focuses on one
variable as the key aspect of the situation and uses 2"-1 conditional utility
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functions for this variable. Each of these functions corresponds to a vertex
of the other n - 1 variables. The third and simplest approximation dispenses
with conditional utility functions altogether. It uses only the values of u at the
2" vertices of T and approximates u at other points by multilinear inter­
polation.

A Bilateral Approximation

The first and most complex approximation that we examine in this section
corresponds to Fishburn's bilateral independence form [l], which is based on
two conditional utility functions for each attribute. The approximation uses
two fixed points, XO and Xl. Letting Uk(Xi) = u(xlk, ... , XLI' Xi, X~+l ,... , x n

k )

for k = 0, 1, the bilateral approximation is given by

n

vex) = L UO(Xi) - (n - 1) u(XO)
i=l

where

( . .) _ "{(_I)H~13i ($1 13 n ).C 11 , ••. , 1s - L. U Xl"'" Xn .

f3i E {O, I} for each i E {il , ••. , is} and f3i = 0 otherwise},

provided that the denominator ot /; does not vanish. If u(x1
) + u(XO) =

UI(XiO) + uo(x/) for one or more i, then (11) can be simplified as described in
[1]. If Xl > XO and u is conservative then the denominator of each h is
nonzero.

THEOREM 6. Suppose v is given by (11) with eachh well defined. Then v is
affine preserving and vex) = u(x) ifeither Xi ~ XiO for at least n - 1 variables
or Xi = X/ for at least n - 1 variables.

Proof Since the transformation au + b, a > 0, sends c(il ,.... , is) into
ac(il ,... , is) and has no effect onh , it follows from (11) that v is affine preserv­
ing. If Xi = XiO for all i > 1 then, since h(x;O) = 0 for all i > 1 and since
each h product in (11) involves at least two variables, v(xl , x 20, ••. , x n O) =

UO(xl ). Hence, in general, vex) = u(x) when Xi ;= xl for at least n - 1
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variables. On the other hand, if x; = xl for all i> 1, then f,(xl) = 1 for
all i > 1 and it can be shown without undue difficulty that (11) reduces to

V(X1 , )(21, ••• , x n
1) = UO(X1) + I uo(xl) - (n - 1) u(xD

)
;>1

+ (n - 2) u(XO) - I uo(x,-l) + 211(-'1°)
i>l

Therefore vex) = u(x) when Xi = xl for all i > 1, and in general L{X) = u(x)
when Xi = xl for at least n - 1 variables. Q.E.D.

Approximation (11) is a natural generalization of the simple additive­
multiplicative form (14) in [2] and, as in the previous 11 = 2 case, a general
analysis of D(v, u) for (11) appears quite difficult. However, the picture simpli­
fies greatly if u is conservative and XO and Xl are fixed at the extremes of T
Then, as shown by Theorems 6 and 7, both u and v are conservative and they
are equal if either at least n - 1 Xi = 0 or at least n - 1 X; = 1.

THEOREM 7. IIu is conservative and v is specified by (11) with XO = (0, .... 0)
and Xl = (1, ... , 1), then v is conservative.

Proof. Let u be conservative with v given by (1i) with X O = (0,... , 0) and
Xl = (1, ... , 1). For definiteness we work with the first two variables. Given
Xl > YI and X 2 > Y2, our main task will be to show that V(XI , )'2' X 3 ,,,·,

X n) - D(Y1,Y2'X3 "",Xn) > V(XI ,X2 ,X3 , ... ,X,,) - V(;\, X 2 'X3 ' .... X n).

This is true if and only if

L(;(x1) - fl()\)][f2(Y2) - 12(x2)] [C(1, 2) + I lcO' 2, i1 , i,) JJfi lX;):

s~ 1 and 3 ~ i 1 < i., ~ n(] > O.

It is easily seen that conservatism of u implies that 11(x1) - 11( ),\) > 0 and
12( yJ - IlxJ < O. The preceding inequality will therefore be valid if the
total c term is negative. If n = 2 then this term is simply c(l, 2), which is
negative by conservatism of u. Suppose then that n ~ 3. Let h; and di be
respectively the numerator and denominator of fi(x;) as defined after (11),
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and let e(y) = u(O, 0, y) - u(l, 0, y) - u(O, 1, y) + u(1, 1, y) for each
y E {O, l}n-2. It then follows that

n

= Il di l L e(y) Il hi Il (di - hi)'
i~3 'YE{O,I}"-2 {i:'Yi~l} {;:'Yi~O}

By conservatism of u, d; < 0, hi < 0, di - hi < ° for i = 3,.. " nand
e(y) < °for all y E {O, 1}n-2. Hence the preceding expression, or the total c
term, is negative. Therefore v(xI , Y2 ,...) - v()"!, Y2 ,...) > v(x l , X 2 " .. ) ­

v(J'l, X 2 , •••). Moreover, by taking the variables in sequence, v(xl , X 2 , -'3""
Xn) - V(Yl, X2 , X3 , ... , Xn) ;?: v(Xl , 1, X3 ,... , Xn) - v(Yl, L -'3 , ... , Xn) ;?:
v(XI , 1, 1, X4 , ... , Xn ) - v(},!, 1, 1, X4 , •.. , X n) ;?: .. , ;?: V(Xl , 1,.. " 1) -
v(y!, 1, , I)whenxI >YI.ByTheorem6,v(xl , 1,... , I)-v(},!, 1,... , 1)=
U(Xl , 1, , 1) - u(Yl, 1,.... , 1), which is positive when u is conservative and
Xl > J'l . Therefore v increases in its first variable when U is conservative and,
by analogy, v increases in each variable when U is conservative. It then follows
that v is conservative. Q.E.D.

An Approximation with One Key Variable

In many multiattribute situations one of the n attributes will be more
important than the others. We now consider an approximation that seems well
suited to this situation, especially when u is monotonic in its variables. The
approximation is based on convex combinations of 2n - l conditional utility
functions of the key variable, say Xl' Each conditional function has the
form U(Xl , A2 , ••• , An) where A = (A2 , ... , An) is a comer point of the other
n - 1 variables with A; E {O, I} for each i. The explicit form of the approxima­
tion is

for all x E T (12)

where, in the product, 00 = L Characteristics of (12) are given in the follow­
ing theorem.

THEOREM 8. Suppose v is given by (12). Then v is affine preserving, mono­
tonicity preserving, conservatism preseroing, and vex) = u(x) whenever
(x2 , ••• , x n) E{O, I}n-l. Moreover, if i > 1 then vis a linear function of Xi

when all Xj for j *- i are fixed. In addition, D(v, u) ,,;; max u(x) - min u(x),
and if u is monotone increasing in all variables then D(v, u) ,,;; max,,,, [u
(Xl' 1,... , 1) - U(Xl , 0, ... , 0)].
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Proof Monotonicity preservation for Xl is clear from (12). For i > 1 let
i = 2 for definiteness. Then

[

n

= X 2 L nX~i(l
uE{O,1},,-2 3

- U(Xl , 0, fk3 ,... , fkn)] + ~ [9 X~i(l - X;)l-'"'] U(XI ,0,03"'" fk"J,

which shows that v is linear in X 2 when the other Xi are fixed, and that v
preserves monotonicity in X 2 • Since other aspects of the theorem are obvious
except for conservatism preservation, we conclude with a proof of this
aspect. Assume that U is conservative. To show that v too is conservative it
will suffice to consider Xl versus X 2 and X 2 versus x". Suppose first that
Xl > Yl and X 2 > Yi . By the preceding equation,

= (x:! - Y2) I (Ii) [u(Yl. 1, fL) - a(Yl, 0, fk)].
u 3,

This remains valid when Yl is replaced by Xl throughout. Since X 2 > Y2 and
since U(}'l, 1, fk) - u()\ ,0, fl) > u(xl , 1, fL) - u(xl , 0, p,) by conserva­
tism of u, V(Yl' X 2 , X 3 , ... ) - V(Yl,)'2, X 3 , ... ) > V(Xl , x 2 ' X 3 , ..•) - V(X1 ,

'>'2' X3 , ... ), which says that v is conservative in Xl and X2' For X2 versus X3

suppose that X 2 > J'2 and X3 > )'3 . By a similar procedure to that just used
it follows that v(x l , Y2 , X 3 , X 4 , ... ) - v(x l , Y2 , Y3 • X J , ... ) > z:(xl , X 2 , X3 ,

x. ,...} - v(x1 , x 2 , Y3 , X J , ... ), and hence that v is conservative in X 2 and -"'3 ,

if and only if

"E{O~}"-3 [~X;'(l - xY-u,] [u(x l , 1. 0, fk)

+ uex! , 0, 1, fk) - u(xl ,0,0, fL) - u(x!, 1. 1. JL)] > 0.

This is true by the conservatism of u. QED

A .Multilinear Approximation

We conclude with a simplification of the preceding approximation that is
based solely on multilinear interpolation of the U values at the 2n vertices of T.
With ,\ = (1.1 , ... , An), the multilinear approximation is

L'(X) = I [Ii X~i(l - X,Y-Ai] U(A)
AE[O,l}" i~l

for all x E T. (13)
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This is the only approximation in the paper that does not require estimation
of any conditional utility functions. Although it is quite simple it may serve
well in some cases. The following theorem summarizes aspects of (13). Its
proof is similar to the preceding proof and will be omitted.

THEOREM 9. Suppose v is given by (13). Then v is affine preserving, mono­
tonicity preserving, conservatism preserving, v(A) = u(A) for all ,\ EO {a, l}n,
v is linear in each Xi , and D(v, u) :(; max u(x) - min u(x).
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